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Recap: Syscalls

● An API of an OS

● User-level Application calls functions in kernel
● Open
● Read
● Write
● Exec
● Send
● Recv
● Socket
● Etc...
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

2
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

3

printf(“ECE469”)

A library call in ring 3
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

4

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

5

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

6

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

7

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)
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Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

8

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)
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System calls via Interrupt Handler

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS
• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware
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• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS
• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30
CHECK!!

System calls via Interrupt Handler
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Implementing Syscalls in JOS

● See kern/syscall.c

● void sys_cputs(const char *s, size_t len)
○ Print a string in s to the console

● int sys_cgetc(void)
○ Get a character from the keyboard

● envid_t sys_getenvid(void)
○ Get the current environment ID (process ID)

● int sys_env_destroy(envid_t)
○ Kill the current environment (process)
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Implementing Syscalls in JOS

● See kern/syscall.c

● void sys_cputs(const char *s, size_t len)
○ Print a string in s to the console

● int sys_cgetc(void)
○ Get a character from the keyboard

● envid_t sys_getenvid(void)
○ Get the current environment ID (process ID)

● int sys_env_destroy(envid_t)
○ Kill the current environment (process)

Required for 
Implementing scanf, printf, 
etc…
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Passing arguments to Syscalls

● How can we pass arguments to syscalls?
○ Remember syscalls are implemented as interrupts!
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Passing arguments to Syscalls

● How can we pass arguments to syscalls?
○ Remember syscalls are implemented as interrupts!

General Purpose Registers!!!
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Passing arguments to Syscalls

● In JOS
○ eax = system call number

○ edx = 1st argument

○ ecx = 2nd argument

○ ebx = 3rd argument

○ edi = 4th argument

○ esi = 5th argument

● E.g., calling sys_cputs(“asdf”, 4);

○ eax = 0

○ edx = address of “asdf”

○ ecx = 4

○ ebx, edi, esi = not used

● And then 

○ Run int $0x30
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Passing arguments to Syscalls

● In JOS
○ eax = system call number

○ edx = 1st argument

○ ecx = 2nd argument

○ ebx = 3rd argument

○ edi = 4th argument

○ esi = 5th argument

● E.g., calling sys_cputs(“asdf”, 4);

○ eax = 0

○ edx = address of “asdf”

○ ecx = 4

○ ebx, edi, esi = not used

● And then 

○ Run int $0x30

Will add more as
our lab implementation progresses
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Passing arguments to Syscalls

• In Linux x86 (32-bit)
• eax = system call number

• ebx = 1st argument

• ecx = 2nd argument

• edx = 3rd argument

• esi = 4th argument

• edi = 5th argument

• See table
• https://syscalls.kernelgrok.com/  : lists 337 system calls…

https://syscalls.kernelgrok.com/
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Handling arguments to Syscalls

• E.g., calling sys_cputs(“asdf”, 4);
• eax = 0
• edx = address of “asdf”
• ecx = 4
• ebx, edi, esi = not used

• And then 
• Run int $0x30

• At interrupt handler
• Read syscall number from the eax of tf

• syscall number is 0 -> calling SYS_cputs

• Read 1st argument from the edx of tf
• Address of “adsf”

• Read 2nd argument from ecx of tf
• 4

• call sys_cputs(“asdf”, 4) // in kernel
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Invoking Syscalls

• Set all arguments in the registers
• Order: edx ecx ebx edi esi

• int $0x30 (in JOS)
• Software interrupt 48

• int $0x80 (in 32bit Linux)
• Software interrupt 128
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• User calls a function

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then 

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then 

• int $0x30

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then 

• int $0x30

• Now kernel execution starts…

Invoking Syscalls in User mode
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• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then 

• int $0x30

• Now kernel execution starts…

Invoking Syscalls in User mode
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Handling Syscalls in Kernel

• CPU gets software interrupt
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Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)
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Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()
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Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()
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Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()



32

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()
• Get registers that store arguments from struct Trapframe *tf
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Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()
• Get registers that store arguments from struct Trapframe *tf

• Call syscall() using those registers
• This syscall() is at kern/syscall.c
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!
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Syscall Return from Kernel
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• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret Restore the CPU state

from the trap frame
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret Restore the CPU state

from the trap frame
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Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret

• Back to Ring 3!

Restore the CPU state
from the trap frame
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System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…
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System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3
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System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3

Ring 0
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System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3

Ring 0

Ring 3
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Page faults

• Occurs when paging (address translation) fails

○ !(pde&PTE_P) or !(pte&PTE_P): Present bit not set
■ Automated extension of runtime stack

○ Write access but !(pte&PTE_W): access violation

○ Access from user but !(pte&PTE_U): protection violation
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Page faults Handling (2): Copy-On-Write (CoW)

• Copy-on-Write (CoW)
• Technique to reduce memory footprint
• Share pages read-only
• Create a private copy when the first write access happens

• Memory Swapping
• Use disk as extra space for physical memory
• Limited RAM Size: 16GB?
• We have a bigger storage: 1T SSD, Hard Disk, online storage, etc.
• Can we store some ‘currently unused but will be used later’ part into the 

disk?
• Then we can store only the active part of data in memory 
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Program in Memory

• .text
• Code area. Read-only and executable

• .rodata
• Data area, Read-only and not executable

• .data
• Data area, Read/Writable (not executable)
• Initialized by some values

• .bss (uninitialized data)
• Data area, Read/Writable (not executable)
• Initialized as 0

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)
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Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)
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Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1
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Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1
Process 2
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Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1
Process 2

Do we need to copy the same data for
each process creation? 
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Sharing pages by marking read-only

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

• Set page table to map the same physical address to share contents
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Sharing pages by marking read-only

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1
• Set page table to map the same physical address to share contents
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Sharing pages by marking read-only

• Set page table to map the same physical address to share contents

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2
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What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1
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What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write
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What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!
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Handling writes: Copy-on-Write

• Read CR2
• A fault from one of the shared location!

• Read Error code
• Write on read-only memory

• Hmm… the process requires a private copy! (we actually mark if COW is required in PTE)

• ToDo: create a writable, private copy for that process!
• Map a new physical page (page_alloc, page_insert)
• Copy the contents
• Mark it read/write
• Resume…
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Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!
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Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!



61

Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!
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Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2
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Benefits

• Can reduce time for copying contents that is already in some physical 
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only 
data among multiple processes

• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if nothing has written at all)
• Can create private pages seamlessly on write
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Benefits

• Can reduce time for copying contents that is already in some physical 
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only 
data among multiple processes

• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if not has written at all)
• Can create private pages seamlessly on write

By exploiting page fault and its handler, we can implement 
copy-on-write, a mechanism that can reduce physical memory 

usage by sharing pages of same contents among
multiple processes.
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Handling low memory

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?
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Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
(MB)

Reg 
(KB)

FAST Expensive

SIZE
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Memory Swapping

● Use disk as backing store under memory pressure
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Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Memory Swapping - Removing a page
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Memory Swapping - Removing a page
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

DISK 0xf0200000
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Memory Swapping - Removing a page
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page 
Fault!

DISK 0xf0200000

Memory Swapping - Removing a page
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Swapping - Transparently load page from disk

• Page fault handler
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code



76

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

• Load that page into physical memory
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Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and
• The faulting page of the current process is stored in the disk

• Lookup disk if it swapped put 0xf0200000 of this environment (process)
• This must be per process because virtual address is per-process resource

• Load that page into physical memory
• Map it and then continue!
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page 
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page 
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page 
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!
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Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!

Continue!
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Page Fault

• Is generated when there is a memory error (regarding paging)

• Is an exception that can be recovered
• And user program may resume the execution

• Is useful for implementing
• Automatic stack allocation

• Copy-on-write (will do in Lab4)

• Swapping


