
More System calls and
Page faults

ECE 469, Feb 20

Aravind Machiry

1

Recap: Syscalls

● An API of an OS

● User-level Application calls functions in kernel
● Open
● Read
● Write
● Exec
● Send
● Recv
● Socket
● Etc...

2

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

2

3

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

3

printf(“ECE469”)

A library call in ring 3

4

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

4

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

5

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

5

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

Interrupt!, switch from ring3 to ring0

6

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

6

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

7

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

7

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

8

Syscall: User/Kernel communication

OS Kernel (Ring 0)

User Level (Ring 3)

Libraries

8

printf(“ECE469”)

sys_write(1, “ECE469”, 6);

A library call in ring 3

A system call, From ring 3

do_sys_write(1, “ECE469”, 6)
A kernel function

Interrupt!, switch from ring3 to ring0

iret (ring 0 to ring 3)

ret (ring 3)

9

System calls via Interrupt Handler

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS
• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

10

• Call gate
• System call can be invoked only with trap handler

• int $0x30 – in JOS
• int $0x80 – in Linux (32-bit)

• int $0x2e – in Windows (32-bit)

• sysenter/sysexit (32-bit)

• syscall/sysret (64-bit)

• OS performs checks if userspace is doing a right thing
• Before performing important ring 0 operations

• E.g., accessing hardware..

OS Syscalls

Ring 3

Library Calls

App

Hardware

int $0x30
CHECK!!

System calls via Interrupt Handler

11

Implementing Syscalls in JOS

● See kern/syscall.c

● void sys_cputs(const char *s, size_t len)
○ Print a string in s to the console

● int sys_cgetc(void)
○ Get a character from the keyboard

● envid_t sys_getenvid(void)
○ Get the current environment ID (process ID)

● int sys_env_destroy(envid_t)
○ Kill the current environment (process)

12

Implementing Syscalls in JOS

● See kern/syscall.c

● void sys_cputs(const char *s, size_t len)
○ Print a string in s to the console

● int sys_cgetc(void)
○ Get a character from the keyboard

● envid_t sys_getenvid(void)
○ Get the current environment ID (process ID)

● int sys_env_destroy(envid_t)
○ Kill the current environment (process)

Required for
Implementing scanf, printf,
etc…

13

Passing arguments to Syscalls

● How can we pass arguments to syscalls?
○ Remember syscalls are implemented as interrupts!

14

Passing arguments to Syscalls

● How can we pass arguments to syscalls?
○ Remember syscalls are implemented as interrupts!

General Purpose Registers!!!

15

Passing arguments to Syscalls

● In JOS
○ eax = system call number

○ edx = 1st argument

○ ecx = 2nd argument

○ ebx = 3rd argument

○ edi = 4th argument

○ esi = 5th argument

● E.g., calling sys_cputs(“asdf”, 4);

○ eax = 0

○ edx = address of “asdf”

○ ecx = 4

○ ebx, edi, esi = not used

● And then

○ Run int $0x30

16

Passing arguments to Syscalls

● In JOS
○ eax = system call number

○ edx = 1st argument

○ ecx = 2nd argument

○ ebx = 3rd argument

○ edi = 4th argument

○ esi = 5th argument

● E.g., calling sys_cputs(“asdf”, 4);

○ eax = 0

○ edx = address of “asdf”

○ ecx = 4

○ ebx, edi, esi = not used

● And then

○ Run int $0x30

Will add more as
our lab implementation progresses

17

Passing arguments to Syscalls

• In Linux x86 (32-bit)
• eax = system call number

• ebx = 1st argument

• ecx = 2nd argument

• edx = 3rd argument

• esi = 4th argument

• edi = 5th argument

• See table
• https://syscalls.kernelgrok.com/ : lists 337 system calls…

https://syscalls.kernelgrok.com/

18

Handling arguments to Syscalls

• E.g., calling sys_cputs(“asdf”, 4);
• eax = 0
• edx = address of “asdf”
• ecx = 4
• ebx, edi, esi = not used

• And then
• Run int $0x30

• At interrupt handler
• Read syscall number from the eax of tf

• syscall number is 0 -> calling SYS_cputs

• Read 1st argument from the edx of tf
• Address of “adsf”

• Read 2nd argument from ecx of tf
• 4

• call sys_cputs(“asdf”, 4) // in kernel

19

Invoking Syscalls

• Set all arguments in the registers
• Order: edx ecx ebx edi esi

• int $0x30 (in JOS)
• Software interrupt 48

• int $0x80 (in 32bit Linux)
• Software interrupt 128

20

• User calls a function

Invoking Syscalls in User mode

21

• User calls a function
• cprintf -> calls sys_cputs()

Invoking Syscalls in User mode

22

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

Invoking Syscalls in User mode

23

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then

Invoking Syscalls in User mode

24

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then

• int $0x30

Invoking Syscalls in User mode

25

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then

• int $0x30

• Now kernel execution starts…

Invoking Syscalls in User mode

26

• User calls a function
• cprintf -> calls sys_cputs()

• sys_cputs() at user code will call syscall() (lib/syscall.c)
• This syscall() is at lib/syscall.c

• Set args in the register and then

• int $0x30

• Now kernel execution starts…

Invoking Syscalls in User mode

27

Handling Syscalls in Kernel

• CPU gets software interrupt

28

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

29

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

30

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

31

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()

32

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()
• Get registers that store arguments from struct Trapframe *tf

33

Handling Syscalls in Kernel

• CPU gets software interrupt

• TRAPHANDLER_NOEC(T_SYSCALL…)

• _alltraps()

• trap()

• trap_dispatch()
• Get registers that store arguments from struct Trapframe *tf

• Call syscall() using those registers
• This syscall() is at kern/syscall.c

34

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

35

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

36

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()

37

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret

38

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret Restore the CPU state

from the trap frame

39

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret Restore the CPU state

from the trap frame

40

Syscall Return from Kernel

• Finishing handling of syscall (return of syscall())

• trap() calls env_pop_tf()
• Get back to the user environment!

• env_pop_tf()
• Runs iret

• Back to Ring 3!

Restore the CPU state
from the trap frame

41

System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

42

System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3

43

System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3

Ring 0

44

System call Execution

• Execution…
• int $0x30

• Call trap gate

• Handle trap!

• Pop context

• iret

• Execution resumes…

Ring 3

Ring 0

Ring 3

45

Page faults

• Occurs when paging (address translation) fails

○ !(pde&PTE_P) or !(pte&PTE_P): Present bit not set
■ Automated extension of runtime stack

○ Write access but !(pte&PTE_W): access violation

○ Access from user but !(pte&PTE_U): protection violation

46

Page faults Handling (2): Copy-On-Write (CoW)

• Copy-on-Write (CoW)
• Technique to reduce memory footprint
• Share pages read-only
• Create a private copy when the first write access happens

• Memory Swapping
• Use disk as extra space for physical memory
• Limited RAM Size: 16GB?
• We have a bigger storage: 1T SSD, Hard Disk, online storage, etc.
• Can we store some ‘currently unused but will be used later’ part into the

disk?
• Then we can store only the active part of data in memory

47

Program in Memory

• .text
• Code area. Read-only and executable

• .rodata
• Data area, Read-only and not executable

• .data
• Data area, Read/Writable (not executable)
• Initialized by some values

• .bss (uninitialized data)
• Data area, Read/Writable (not executable)
• Initialized as 0

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

48

Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

49

Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1

50

Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1
Process 2

51

Running same program multiple times

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

Process 1
Process 2

Do we need to copy the same data for
each process creation?

52

Sharing pages by marking read-only

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

• Set page table to map the same physical address to share contents

53

Sharing pages by marking read-only

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1
• Set page table to map the same physical address to share contents

54

Sharing pages by marking read-only

• Set page table to map the same physical address to share contents

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

55

What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

56

What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

57

What about writes?

• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

58

Handling writes: Copy-on-Write

• Read CR2
• A fault from one of the shared location!

• Read Error code
• Write on read-only memory

• Hmm… the process requires a private copy! (we actually mark if COW is required in PTE)

• ToDo: create a writable, private copy for that process!
• Map a new physical page (page_alloc, page_insert)
• Copy the contents
• Mark it read/write
• Resume…

59

Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

60

Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

61

Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

62

Handling writes: Copy-on-Write
• How can Process 1 write on .bss??

.text (R-X)

.rodata (R--)

.data (RW-)

.bss (RW-)

.text (R-X)

.rodata (R--)

.data (R--)

.bss (RW-)

Process 1

Write

Page fault!

.bss (RW-)

COPY!

MAP!

.text (R-X)

.rodata (R--)

.data (R--)

.bss (R--)

Process 2

63

Benefits

• Can reduce time for copying contents that is already in some physical
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only
data among multiple processes

• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if nothing has written at all)
• Can create private pages seamlessly on write

64

Benefits

• Can reduce time for copying contents that is already in some physical
memory (page cache)

• Can reduce actual use of physical memory by sharing code/read-only
data among multiple processes

• 1,000,000 processes, requiring only 1 copy of .text/.rodata

• At the same time
• Can support sharing of writable pages (if not has written at all)
• Can create private pages seamlessly on write

By exploiting page fault and its handler, we can implement
copy-on-write, a mechanism that can reduce physical memory

usage by sharing pages of same contents among
multiple processes.

65

Handling low memory

• Suppose you have 8GB of main memory

• Can you run a program that its program size is 16GB?
• Yes, you can load them part by part

• This is because we do not use all of data at the same time

• Can your OS do this execution seamlessly to your application?

66

Memory Hierarchy

DISK
(TB? PB?)

Main Memory
(GB)

Cache
(MB)

Reg
(KB)

FAST Expensive

SIZE

67

Memory Swapping

● Use disk as backing store under memory pressure

68

Memory Swapping
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

69

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Memory Swapping - Removing a page

70

Memory Swapping - Removing a page
Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

DISK 0xf0200000

71

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Memory Swapping - Removing a page

72

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Memory Swapping - Removing a page

73

Swapping - Transparently load page from disk

• Page fault handler

74

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

75

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

76

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

77

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk

78

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

79

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)

• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

80

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and

• The faulting page of the current process is stored in the disk
• Lookup disk if it swapped put 0xf0200000 of this environment (process)

• This must be per process because virtual address is per-process resource

• Load that page into physical memory

81

Swapping - Transparently load page from disk

• Page fault handler
• Read CR2 (get address, 0xf0200000)
• Read error code

• If error code says that the fault is caused by non-present page and
• The faulting page of the current process is stored in the disk

• Lookup disk if it swapped put 0xf0200000 of this environment (process)
• This must be per process because virtual address is per-process resource

• Load that page into physical memory
• Map it and then continue!

82

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

83

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

84

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

Page
Fault!

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

85

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!

86

Virtual Memory Physical Memory

0xf0200000

0xf0200000

pgdir

PT

PT

Access

DISK 0xf0200000

Swapping - Transparently load page from disk

READ from DISK

Allocate
New page!

Create new map!

Continue!

87

Page Fault

• Is generated when there is a memory error (regarding paging)

• Is an exception that can be recovered
• And user program may resume the execution

• Is useful for implementing
• Automatic stack allocation

• Copy-on-write (will do in Lab4)

• Swapping

